If a is an integer lying in [-5, 30], then the probability that the graph $y = x^2 + 2$ (a + 4) x - 5a + 64 is strictly above the x-axis is _____.

Solution:

$$x^2 + 2 (a + 4) x - 5a + 64 \ge 0$$

If
$$D \le 0$$
, then $(a + 4)^2 - (-5a + 64) < 0$ Or

$$a^2 + 13a - 48 < 0$$
 Or

$$(a+16)(a-3)<0$$

$$\Rightarrow$$
 -16 < a < 3 \Leftrightarrow -5 \leq a \leq 2

Then, the favourable cases are equal to the number of integers in the interval [-5, 2], i.e., 8.

The total number of cases is equal to the number of integers in the interval [-5, 30], i.e., 36.

Hence, the required probability is 8/36 = 2/9.